Proofs		• •		•
Proove that for all integers n, if n is	evin	then r	12 :2 0	even.
Suppose n is an integer, let n be	even	n = 2	ek fo	ю
Some integers k. Then nº: (2k))n = 2 (hn	when	e.
{n is an integer kn is an in n is even	teger	so r) ² iş	lven.
n=2k kis an integer	• •	• •	• •	•
↓		o o	• •	٠
$n^2 = 2k \cdot n$ $n^2 = 2(kn)$ intyr	• •	• •	• •	
Proof by Ca	ises	• •	• •	•
True or false?	• •	• •	• •	•
For all integers n. n ² +n is even. This statement is true. Suppose n	is an	integ	us,	•
This statement is true. Suppose n We have 2 cases. Case! In is even, then n=2k for some in				
n is even, then $n=2k$ for some in n(n+1)=2k(n+1), value $k(n+1)$ i	iteger k	and.	n+n-	P .
$n^{2}+n$ is even,		in redit		•
cuse? n'is even. n is odd, then n=2k+1 for de	ome. 1	ntyer	k.T	They
$n^{2}+n = n(n+1) = n(2k+1+1) = 2n(k+1)$ an integer, so $n^{2}+n$ is even.				
	• •		• •	
True or False For all integers n, there exists an in	iteurs	 0 .	. Tha:	†
n+mis even.				•

This statement is true. Suppose n is an integers, n + m = 2Choose m. 2-n, then m is an integers, M: 2-n $N+M = N + 2 - n = 2 = 2 \times 1$ where 1 is an integer, so ntm is even. The or Faise Thre exists an integer m so that for all integers n, n+m is even. This Statement is false Prove the Negatron: "For all integers m, there exists an integers n, such that n+m is odd." Same proof. The or False? For all integers y, there exists an integer x so that x²+x=y. This statement is fuse. <u>Myertion</u>: There exis on integers y, for all integers x, $x^2 + x \neq y$. proof: Choose y = -1, then y is an integer, then $\chi^{2}+\chi = \chi^{2}+2(\frac{1}{2}x)+\frac{1}{4}-\frac{1}{4} = (\chi+\frac{1}{2})^{2}-\frac{1}{4} = -\frac{1}{4}>-1=y$. Thus, $\chi^{2}+\chi \neq y$. 13 prime number is an integer larger than so that its only 1. positive divisors are I and itself.